Join the league of Digital Tech specialists

With specialization in Data Analytics, Internet of Things, Embedded Systems, Security, Networks and Cloud

 

New-age digital technologies are transforming the world and spawning a massive demand for specialists in areas like Data Analytics, IoT, Embedded Systems, Security, Networks and Cloud, etc. While specialists in Data Analytics are powering organisations with transformative capacities to win in their businesses, the IoT and Embedded Systems specialists are revolutionising our lives and society. Massive growth in connectivity means a greater need for security specialists and huge connected infrastructure needs specialists in Network and Cloud. 

 

M.Tech. Software Systems is a unique programme that enables working professionals to specialise in many new-age technology areas and be ready to transition into high demand careers. The programme enables the learners to specialize in some of the fastest-growing domains like Data Analytics, Internet of Things, Embedded Systems, Security, Networks and Cloud. A comprehensive curriculum, extensive emphasis on experiential learning using remote labs and cloud labs and a flexible education methodology that enables working professionals to acquire a prestigious post-graduate engineering degree while pursuing their careers, the M.Tech. Software Systems is just the right programme for career growth in the software industry.

 

 

Programme Highlights


  1. Industry-relevant curriculum, delivered online or on-site lectures.
  2. The programme offers a set of core courses and elective courses, allowing students to specialize in Data Analytics, Internet of Things, Embedded Systems, Security, Networks and Cloud.
  3. The programme makes use of Languages, Platforms, and Libraries. These include NS2, Net-SNMP, WireSha, R, Python, Prolog, Lisp, RStudio, Weka, Microsoft Power BI, TensorFlow, Anaconda Navigator, Python Ecosystem – NumPy, SciPi, Pandas, scikit-learn, MatplotLib; Searborn, Keras, NLTK, pgmpy etc., Keil, CCS Studio, Tossim, Cheddar, Jenkins, GitHub, SonarQube, Selenium, Tomcat, Maven, Java, Eclipse, Code::Blocks, Android Studio, Jupyter Notebooks, Spyder, Multisim, CPU-OS Simulator, SQLite, MATLAB, , Gantt Project, Open Project and XAMPP.
  4. The Dissertation (Project Work) in the final semester enables students to apply concepts and techniques learned during the programme.
  5. The programme uses a Continuous Evaluation System that assesses the learners over convenient and regular intervals. Such a system provides timely and frequent feedback and helps busy working professionals stay on course with the programme.
  6. The education delivery methodology is a blend of classroom and experiential learning. Experiential learning consists of lab exercises, assignments, case studies and work-integrated activities.
  7. Participants who successfully complete the programme will become members of an elite & global community of BITS Pilani Alumni

Programme Curriculum

The programme offers specialisations in high-demand areas such as Data Analytics, Internet of Things, Embedded Systems, Security, Networks and Cloud.

Electives can be chosen either from the General pool of electives or from across other pools of electives for Specialisations. Specialisations are optional. To earn a Specialization, a participant must select and successfully complete at least 5 courses from that Specialisation pool.

The programme offers a degree of customisation to address the specific L&D needs of your organisations.

  • Data Structures & Algorithms Design
  • Database Design & Applications
  • Distributed Computing
  • Elective 1
  • Software Architectures
  • Elective 2
  • Elective 3
  • Elective 4
  • Elective 5
  • Elective 6
  • Elective 7
  • Elective 8

Dissertation

  • Artificial Intelligence
  • Computer Organization and Software Systems
  • Distributed Data Systems
  • Software Engineering and Management
  • Usability Engineering
  • Object-oriented Analysis & Design

Learning Methodology

LECTURES DELIVERED ONLINE AND ONSITE

Lectures are delivered by BITS Pilani faculty members through live via online classes, or at the organisation's premises, and are designed to offer similar levels of interactivity as regular classrooms at the BITS Pilani campus.

DIGITAL LEARNING

Learners can access engaging learning material which includes recorded lectures from BITS Pilani faculty members, course handouts and recorded lab content where applicable.

CONTINUOUS ASSESSMENT

Continuous Assessment includes graded Assignments/ Quizzes, Mid-semester exam, and Comprehensive Exam.

EXPERIENTIAL LEARNING

The programme emphasises on Experiential Learning that allows learners to apply concepts learnt in the classroom in simulated, and real work situations. This is achieved through:

 

Simulation Tools, Platforms & Environments: Some or all of the following would be utilised across the programme.

  • Cloud based virtual lab which supports the following programming languages/tools/simulators:
    • Networks: NS2, Net-SNMP and WireShark
    • Data Analytics:
      • Languages: R, Python, Prolog and Lisp
      • Platforms: RStudio, Weka, Microsoft Power BI, TensorFlow and Anaconda Navigator
      • Libraries: Python Ecosystem – NumPy, SciPi, Pandas, scikit-learn, MatplotLib; Searborn, Keras, NLTK, pgmpy etc.
    • Embedded and IOT: Keil, CCS Studio, Tossim and Cheddar
    • Devops: Jenkins, GitHub, SonarQube, Selenium, Tomcat and Maven
    • Programming Environments: Java, Eclipse, Code::Blocks, Android Studio, Jupyter Notebooks and Spyder
    • Others: Multisim, CPU-OS Simulator, SQLite, MATLAB, , Gantt Project, Open Project and XAMPP
  • Remote Lab facility caters to the needs of resource intensive requirements of Big Data Analytics applications with the following platforms:
    • Apache Hadoop
    • Apache Storm
    • Apache Spark
    • Apache Kafka
    • MongoDB
    • CockroachDB
    • MPI
  • Remote Lab facility caters to the needs of Embedded Systems and IoT. It supports the following:
    • Hardware / Software tools: MultiCore STM32 microcontroller based development boards.
    • Simulation tools: Tossim, Cheddar and Keil
CASE STUDIES AND ASSIGNMENTS

Carefully chosen real-world cases & assignments are both discussed and used as problem-solving exercises during the programme.

DISSERTATION/ PROJECT WORK

The fourth semester offers an opportunity for learners to apply their knowledge gained during the programme to a real-world like complex project. The learner is expected to demonstrate understanding of vital principles learnt across semesters and their ability to successfully apply these concepts.

Eligibility Criteria

Minimum eligibility to apply: Employed professionals holding B Tech., BE, M.Sc, MCA or equivalent in relevant disciplines with at least 60% aggregate marks and minimum one year of work experience after the completion of the degree in relevant domains.

Student Speak

Industry Endorsements